

SUGGESTED SOLUTION

INTERMEDIATE MAY 2019 EXAM

SUBJECT - FM

Test Code – CIM 8109

BRANCH - () (Date :)

Head Office : Shraddha, 3rd Floor, Near Chinai College, Andheri (E), Mumbai – 69. Tel : (022) 26836666

Particulars	Rs. (in crore)
Cost of machine	220
Salvage value after 10 years	20
Annual depreciation (220-20)/10	20
Calculation of cash flow and Net Present Value	Rs. (Crore)
Profit before taxes(PBT)	30
Less Taxes @ 35	10.5
Profit after tax(PBT-Tax)	19.5
Add: Depreciation	20
Cash flow per year	39.5
A. Present value of cash flows for 10 years	39.5 × PVAF (0.1,10)
	= 39.5 × 5.6502 = 223.18
B. Present value of the salvage value	$20 \times PVF(0.1.10)$
	$= 20 \times 0.3220 = 6.44$
C. Total present value of cash inflows (A+B)	229.62
D. Initial Investment	220
Net Present Value(NPV)	9.62

From the above calculation, it is clear that Net Present Value is positive and Hence, Rounak Ltd. should buy the lathe machine.

Answer 2:

	` in lakhs
Net Profit	30
Less: Preference dividend	12
Earning for equity shareholders	18
Therefore earning per share	18/3 = ` 6.00

Let, the dividend pay-out ratio be X and so the share price will be:

 $P = [D + (E - D) x r/K_e] / K_e$

42 = [6 + (6 – D) x 0.20 / 0.16] / 0.16

6.72 =[0.16D + 0.12 – 0.20D] / 0.12

1.0752 = 1.2 – 0.04D

-0.1248 = 1.2 – 0.04D

-0.1248 = -0.04D

D = 3.12

D/P ratio = (DPS / EPS) x 100 =(3.12 / 6) x 100 = 52%

So, the required dividend payout ratio will be = 52%.

Answer 3:

Note: Discount Factor to be used = After Tax Cost of debt = 10% x (1 - 0.3) = 7%

1. Computation of Outflows under Lease Option

- (a) Let lease Rentals be Rs. x p.a. So, Post Tax Lease Rentals p.a. = (x) x (1 0.3) = 0.7x
- (b) Annuity Factor at 7% for 5 Years =
- (c) So, PV of Post Tax Lease Rentals = Outflows under Lease Option = (a x b) = 2.8693x

2. Computation of Tax Savings on Depreciation

Particulars			Rs.
(a) Depreciation p.a. =	Cost	5,00,000	1,00,000
	Life inYears	5 Years	
(b) Tax Savings on Ann	ual Depreciation	1 [Tax Rate 30% x Annual Depn. Rs.1,00,000]	30,000

3. Computation of Loan and Interest Paid

Year	Opening Loan Balance	Principal Paid	Interest	Tax Savings on Interest	Total Outflow
(1)	(2)	(3)	(4) – (2) x 10%	(5) - (4) x 30%	(6) = (3) + (4)-(5)-Tax
(1)	(2)	(3)	(+) = (2) x 1070	(0) = (4) x 00/0	Savings on depn (30,000)
1	5 00 000	1 00 000	50,000 [5,00,000	15,000 [50,000	1.05.000
	3,00,000	x 10%] x 30%]	1,03,000		
2	4,00,000 [5,00,000 -	1 00 000	40,000 [4,00,000	12,000 [40,000	08 000
2	4,00,000]	1,00,000	x 10%]	x 30%]	78,000
2	3,00,000 [4,00,000 -	1 00 000	30,000 [3,00,000	9,000 [30,000 x	91 000
5	1,00,000]	1,00,000	x 10%]	30%]	71,000
1	2,00,000 [2,00,000 -	1 00 000	20,000 [2,00,000	6,000 [20,000 x	84.000
4	1,00,000]	1,00,000	x 10%]	30%]	04,000
5	1,00,000 [1,00,000-	1 00 000	10,000 [1,00,000	3,000 [10,000 x	77.000
5	1,00,000]	1,00,000	X 10%3	30%]	11,000

4. Computation of Present Value of Cash Outflows under Loan Option

Particulars	Cash Flow	Year	Disc. Factor 7%	Disc. Cash Flow
Outflows as par WN 2	1,05,000	1	0.934	98,070
Outhows as per win 2	98,000	2	0.873	85,554

4.099

	91,000	3	0.816	74,256
	84,000	4	0.763	64,092
	77,000	5	0.713	54,901
Present Value of Outflows Less : Salvage Value [Rs.50,000 x (1 – Tax Rate of 30%)]	35,000	5	0.713	3,76,873 24,955
Present Value of Outflows				3,51,918

5. Computation of Lease Rental

Particulars	Rs.
(a) Present Value of Outflows under Lease Option = Present Value of Outflows under Loan Option	3,51,918
(c) So, 2.8693 x = 3,51,918. Hence x = $\frac{3,51,918}{2.8693}$ = 1,22,649	1,22,649
Required Lease Rentals p.a. =	

Answer 4:

1. Project S (Rs. Lakhs)

NPV Estimate (N)	Probability CP)	Expected NPV ,	Deviation from Expected NPV (D)	Square of Deviation [D ²]	Variance [P x D ²]
(1)	(2)	(3) = (1) x (2)	(4) = (1)- Σ (3)	(5)	(6) = (2) x (5)
3	0.1	0.3	(6.0)	36.0	3.6
6	0,4	2.4	(3.0)	9.0	3.6
12	0.4	4.8	3.0	9.0	3.6
15	0.1	1.5	6.0	36.0	3.6
Expected NPV	9.0				14.4

2. Project T (Rs. Lakhs)

NPV Estimate (N)	Probability(P)	Expected NPV	Deviation from Expected NPV (D)	Square of Deviation [D ²]	Variance [P x D ²]
(1)	(2)	(3) = (1) x (2)	(4) = (1) — 2(3)	(5)	(6) = (2)x(5)
5	0.2	1.0	(9.1)	82.81	16.56
9	0.3	2.7	(5.1)	26.01	7.80
18	0.3	5.4	3.9	15.21	4.56
25	0.2	5.0	10.9	118.81	23.76
Expected NPV	14.1			52.68	

3. Evaluation

Particulars	Project S	Project T
Variance [σ^2]	14.4	52.68
Standard Deviation [σ] [Risk Associated with the Project]	$\sqrt{14.4} = 3.79$	$\sqrt{52.68} = 7.26$
Expected NPV	9.0	14.10

Co-efficient of Variation = $\frac{\text{Standard Deviation}}{\text{Expected NPV}}$	$\frac{3.79}{9} = 0.42$	$\frac{7.26}{14.1} = 0.51$
Investment	30.0	50.0
Total Inflows = Investment + Expected NPV	30 + 9 = 39.0	50 + 14.1 = 64.1
Profitability Index = $\frac{PV \text{ of Inflows}}{PV \text{ of Outflows}}$	$\frac{39}{30} = 1.30$	$\frac{64.1}{50} = 1.28$

Observation: Project T is more risky than Project S, as the Standard Deviation and co-efficient of Variation is higher for Project T. Project S is also better in terms of return on investment, since the Profitability Index is higher.

Answer 5:

In the present situation, the current MPS is as follows:

$$P = [D_0 (1 + g)] / K_e - g$$
$$P = [2(1 + 0.02)] / 0.15 - 0.02$$
$$= Rs. 20$$

$$P = [D_0 (1 + g)] / K_e - g$$

= Rs. 28.80

$$P = [D_0 (1 + g)] / K_e - g$$
$$= [2(1 + 0.05)] / 0.155 - 0.05$$
$$= Rs. 16.48$$

Answer 6:

Calculation of Present Value of cash flows

	PV factor @ 10%	Project A		Project B	
Year		Cash flows (Rs.)	Discounted Cash flows	Cash flows (Rs.)	Discounted Cash flows
0	1.00	(2,00,000)	(2,00,000)	(2,00,000)	(2,00,000)
1	0.91	35,000	31,850	2,18,000	1,98,380
2	0.83	80,000	66,400	10,000	8,300
3	0.75	55,000 (90,000- 35,000)	41,250	10,000	7,500
4	0.68.	75,000	51,000	4,000	2,720
5	0.62	20,000	12,400	3,000	1,860
		Net Present Value	2,900		18,760

(i) The Payback period of the projects:

Project-A: The cumulative cash inflows upto year 3 is Rs.1,70,000 and remaining amount required to equate the cash outflow is Rs. 30,000 i.e. (Rs. 2,00,000 - Rs. 1,70,000) which will be recovered from year-4 cash inflow. Hence, Payback period will be calculated as below :

3 years + $\frac{\text{Rs.}30,000}{75,000}$ = 3.4 years Or 3 years 4.8 months Or 3 years 4 months and

24 days

Project-B: The cash inflow in year-1 is Rs.2,18,000 and the amount required to equate the cash outflow is Rs. 2,00,000, which can be recovered in a period less than a year. Hence, Payback period will be calculated as below:

 $\frac{\text{Rs.}2,00,000}{\text{Rs.}2,18,000} = 0.917 \text{ years or } 11 \text{ months}$

(ii) Discounted Payback period for the projects:

Project-A: The cumulative discounted cash inflows upto year 4 is Rs.1,90,500 and remaining amount required to equate the cash outflow is Rs. 9,500 i.e. (Rs. 2,00,000 - Rs. 1,90,500) which will be recovered from year-5 cash inflow. Hence, Payback period will be calculated as below:

4 years +
$$\frac{\text{Rs.9,500}}{\text{Rs.12,400}}$$
 = 4.766 years Or 4 years 9.19 months Or 4 years 9 months and

6 days

Project-B: The cash inflow in year-1 is Rs.1,98,380 and remaining amount required to equate the cash outflow is Rs. 1,620 i.e. (Rs. 2,00,000 - Rs. 1,98,380) which will be recovered from year-2 cash inflow. Hence, Payback period will be calculated as below:

1 year +
$$\frac{Rs.1,620}{Rs.8,300}$$
 = 1.195 years Or 1 Year 2.34 months Or 1 Year 2 months and

10 days

(iii) Discounted value of Cash Wows

Desirability Factor (Profitability Index) =
$$\frac{\text{Discounted valu of Cash Inflows}}{\text{Discounted value of Cash Outflows}}$$

Project A =
$$\frac{\text{Rs.2,02,900}}{\text{Rs.2,00,000}}$$
=1.01

Project B =
$$\frac{\text{Rs.2,18,760}}{\text{Rs.2,00,000}}$$
=1.09

(iv) Net Present Value (NPV) of the projects:

Please refer the above table. Project A- Rs. 2,900 Project B- Rs. 18,760